Cultivation of Chlorella Sp. and Algae Mix for NH3-N and PO4-P Domestic Wastewater Removal

I Wayan Koko Suryawan, Evi Siti Sofiyah

Abstract


Domestic wastewater provides the largest contribution to pollution both in terms of quantity and quality. Therefore, before being discharged into the environment, wastewater needs to be managed first. This study used the cultivation of microalgae Chlorella Sp. and Algae Mix to manage domestic wastewater. The reactor used in the study was a 3L volume of water. The cultivation process was assisted by UV-A and UV-B with the air flow rate as much as 1.2L/min. Pollutant parameters being focused on were NH3-N and PO4-P nutrient parameters. Allowance for NH3-N by Chlorella sp. and algae mix are 54.9% and 49%, respectively. Allowance for PO4-P Chlorella sp. and algae mix is 70.2% and 57.1% while biomass increase of Chlorella Sp. and Algae Mix is 85.5% and 98.9%. Specific growth rate of Chlorella sp. and algae mix is 0.025 h-1 and 0.027 h-1. As a control on biomass growth, turbidity value in the study also increased.


Keywords


Algae Mix; Chlorella sp.; NH3-N removal; PO4-P removal

Full Text:

PDF

References


Natsir, M. F., Selomo, M., & La Ane, R. 2019. Efektifitas drum of wastewater treatment (dowt) dalam mereduksi kadar phospat dan nitirit limbah cair domestik. Jurnal Nasional Ilmu Kesehatan: 2(2), 68-75.

Chan, N. W. 2012. Managing urban rivers and water quality in Malaysia for sustainable water resources. International Journal of Water Resources Development, 28(2), 343-354. DOI: 10.1080/07900627.2012.668643.

Suswati, A. C. S. P., Wibisono, G., Masrevaniah, A., Arfiati, D. 2012. Analisis Luasan Constructed Wetland Menggunakan Tanaman Iris dalam Mangolah Air Limbah Domestik (Greywater). The Indonesian Green Technology Journal 1(3): 1-7.

Saadudin, E., Fitri, S. R., & Wargadalam, V. J. 2016. Karakteristik asam lemak mikroalga untuk produksi biodiesel. Ketenagalistrikan dan Energi Terbarukan 10(2): 131-140.

Sulastri, S., Henny, C., Nomosatryo, S. 2019, March. Phytoplankton diversity and trophic status of Lake Maninjau, West Sumatra, Indonesia. In Prosiding Seminar Nasional Masyarakat Biodiversitas Indonesia (Vol. 5, No. 2, pp. 242-250).

Fithriani, D., Amini, S., Melanie, S., & Susilowati, R. (2015). Uji Fitokimia, Kandungan Total Fenol Dan Aktivitas Antioksidan Mikroalga Spirulina Sp., Chlorella Sp., dan Nannochloropsis Sp. Jurnal Pascapanen Dan Bioteknologi Kelautan Dan Perikanan, 10(2), 101-109.

Goldman, C. R., Horne, A. J.. 1983. Limnology. New York: McGraw-Hill Book Company.

Kwon, G., Nam, J. H., Kim, D. M., Song, C., Jahng, D. 2019. Growth and nutrient removal of Chlorella vulgaris in ammonia-reduced raw and anaerobically-digested piggery wastewaters. Environmental Engineering Research 25(2). DOI: https://doi.org/10.4491/eer.2018.442.

Gómez-Guzmán, A., Jiménez-Magaña, S., Guerra-Rentería, A. S., Gómez-Hermosillo, C., Parra-Rodríguez, F. J., Velázquez, S., González-Reynoso, O. 2017. Evaluation of nutrients removal (NO3-N, NH3-N and PO4-P) with Chlorella vulgaris, Pseudomonas putida, Bacillus cereus and a consortium of these microorganisms in the treatment of wastewater effluents. Water Science and Technology 76(1): 49-56. DOI: 10.2166/wst.2017.175.

Wang, Y., Guo, W., Yen, H. W., Ho, S. H., Lo, Y. C., Cheng, C. L., Chang, J. S. 2015. Cultivation of Chlorella vulgaris JSC-6 with swine wastewater for simultaneous nutrient/COD removal and carbohydrate production. Bioresource technology 198: 619-625. DOI: 0.1016/j.biortech.2015.09.067.

Suryawan, I. W. K., Siregar, M. J., Prajati, G., Afifah, A. S. (2019). Integrated Ozone and Anoxic-Aerobic Activated Sludge Reactor for Endek (Balinese Textile) Wastewater Treatment. Journal of Ecological Engineering 20(7): 169-175. DOI: 10.12911/22998993/109858.

Ham Hammouda, O., Abdel-Raouf, N., Shaaban, M., Kamal, M., Plant, B. S. W. T. 2015. Treatment of mixed domestic-industrial wastewater using microalgae Chlorella sp. J. Am. Sci 11(12): 303-315. DOI: 10.1007/s10295-008-0452-4.

Uyar, B., Kutluk, T., & Kapucu, N. 2018. Growth and Lipid Production of Two Microalgae Strains in Pilot Scale (35 L) Panel Photobioreactors. Journal of Advanced Physics 7(4): 527-529. DOI: 10.1166/jap.2018.1463.

Subramanian, G., Yadav, G., Sen, R. 2016. Rationally leveraging mixotrophic growth of microalgae in different photobioreactor configurations for reducing the carbon footprint of an algal biorefinery: a techno-economic perspective. RSC Advances: 6(77), 72897-72904. DOI: 10.1039/C6RA14611B.

Bui, X. T., Nguyen, T. T., Nguyen, D. D., & Dao, T. S. 2018. Effects of nutrient ratios and carbon dioxide bio-sequestration on biomass growth of Chlorella sp. in bubble column photobioreactor. Journal of environmental management, vol 219: 1-8. DOI: 10.1016/j.jenvman.2018.04.109.




DOI: https://doi.org/10.21776/ub.civense.2020.00301.4

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.