Analysis of Wanggu River Sedimentation Due to Land Cover Change using ArcSWAT and its Alternative Control


  • Andri Kwin Hariyanto Universitas Brawijaya, Indonesia
  • Dian Sisinggih Universitas Brawijaya, Indonesia
  • Ussy Andawayanti Universitas Brawijaya, Indonesia



Wanggu watershed, Sedimentation, Land cover, SWAT, GEE


The downstream Wanggu watershed is located in Kendari City, the capital of Southeast Sulawesi Province, with an area of 329.59 km2. So it is very important to arrange the right space. In this research, an analysis of the impact of changes in land cover on sedimentation levels will be carried out, as a basis for considering space utilization so as not to exceed the carrying capacity of the watershed. The analysis method uses the Arcswat application, and land cover changes using comparative data for 2001, 2006, 2009, 2014, and 2020. One of the obstacles in land cover classification is the presence of clouds that cover part of the image. In this research, Google Earth Engine (GEE) is used which will automatically process historical data so that areas covered by clouds are replaced with images that are clear of clouds. The research results show that agricultural land cover has the greatest influence, and overall the watershed shows accumulated sedimentation of 2,515,409.90 tons or a rate of 76.40 tons/ha for land cover in 2001 and sedimentation of 2,808,683.45 tons or rate 85.31 tons/ha. for land cover in 2020.


A. C. Cindy Harifa, M. Sholichin, and T. B. Prayogo, “Analisa Pengaruh Perubahan Penutupan Lahan Terhadap Debit Sungai Sub Das Metro Dengan Menggunakan Program Arcswat,” Jurnal Tenik Pengairan, vol. 008, no. 01, pp. 1–14, May 2017, doi: 10.21776/ub.jtp.2017.008.01.01.

A. Rezagama, A. Sarminingsih, B. Zaman, and D. S. Handayani, “Analysis of land use changes effect on erosion and sedimentation potential in Progo watershed,” Journal of Physics: Conference Series, vol. 1217, no. 1, p. 012159, May 2019, doi: 10.1088/1742-6596/1217/1/012159.

M. Zhou et al., “Identifying the effects of land use change on sediment export: Integrating sediment source and sediment delivery in the Qiantang River Basin, China,” Science of The Total Environment, vol. 686, pp. 38–49, Oct. 2019, doi: 10.1016/j.scitotenv.2019.05.336.

A. B. Aneseyee, E. Elias, T. Soromessa, and G. L. Feyisa, “Land use/land cover change effect on soil erosion and sediment delivery in the Winike watershed, Omo Gibe Basin, Ethiopia,” Science of The Total Environment, vol. 728, p. 138776, Aug. 2020, doi: 10.1016/j.scitotenv.2020.138776.

M. R. Iswandi, “Analysis of the Impact of Kendari Bay Shallowing on Community Activities and Mitigation Strategies,” IPB University, 2003.

L. O. Alwi, N. Sinukaban, S. Solahuddin, and H. Pawitan, “Study of the Impact of Land Use Changes on Land Degradation and Hydrological Conditions of the Wanggu Watershed,” Agriplus, vol. 21, no. 3, p. 2011, 2011.

H. Apriyanto, “Kebijakan Pengelolaan Teluk Berbasis Daerah Aliran Sungai (Studi Kasus Teluk Kendari),” Jurnal Sains dan Teknologi Indonesia, vol. 9, no. 3, 2007, doi: 10.29122/jsti.v9i3.781.

Pusat Pengelolaan DAS Sampara, Pola Rehabilitasi Lahan dan Konservasi Tanah DAS Sampara, Kendari. Kendari, 2008.

L. O. Alwi and S. Marwah, “Analisis Dampak Perubahan Penggunaan Lahan terhadap Degradasi Lahan dan Pendapatan Petani di DAS Wanggu Sulawesi Tenggara,” Jurnal Pengkajian dan Pengembangan Teknologi Pertanian, vol. 18, no. 2, 2015, doi: 10.21082/jpptp.v18n2.2015.p%p.

A. Setyo Pambudi, “Watershed Management in Indonesia: A Regulation, Institution, and Policy Review,” Jurnal Perencanaan Pembangunan: The Indonesian Journal of Development Planning, vol. 3, no. 2, Sep. 2019, doi: 10.36574/jpp.v3i2.74.

I. P.U., O. A.A., C. O.C., E. I.I., and M. M.M., “Soil Erosion: A Review of Models and Applications,” International Journal of Advanced Engineering Research and Science, vol. 4, no. 12, pp. 138–150, 2017, doi: 10.22161/ijaers.4.12.22.

J. Devátý, T. Dostál, R. Hösl, J. Krása, and P. Strauss, “Effects of historical land use and land pattern changes on soil erosion – Case studies from Lower Austria and Central Bohemia,” Land Use Policy, vol. 82, pp. 674–685, Mar. 2019, doi: 10.1016/j.landusepol.2018.11.058.

S. Y. Siswanto and F. Francés, “How land use/land cover changes can affect water, flooding and sedimentation in a tropical watershed: a case study using distributed modeling in the Upper Citarum watershed, Indonesia,” Environmental Earth Sciences, vol. 78, no. 17, p. 550, Sep. 2019, doi: 10.1007/s12665-019-8561-0.

A. N. Seika, C. Setyawan, Ngadisih, and R. Tirtalistyani, “Soil erosion mapping using GIS based model in agricultural area of Progo watershed, Central Java, Indonesia,” IOP Conference Series: Earth and Environmental Science, vol. 686, no. 1, p. 012024, Mar. 2021, doi: 10.1088/1755-1315/686/1/012024.

B. P. Ganasri and H. Ramesh, “Assessment of soil erosion by RUSLE model using remote sensing and GIS - A case study of Nethravathi Basin,” Geoscience Frontiers, vol. 7, no. 6, pp. 953–961, Nov. 2016, doi: 10.1016/j.gsf.2015.10.007.

E. Afonso de Oliveira Serrão et al., “Impacts of land use and land cover changes on hydrological processes and sediment yield determined using the SWAT model,” International Journal of Sediment Research, vol. 37, no. 1, pp. 54–69, Feb. 2022, doi: 10.1016/j.ijsrc.2021.04.002.

S. Arifin, E. Suhartanto, and U. Andawayanti, “Analysis of Changes in Land Use Patterns for Erosion and Sediment Prediction,” Civil and Environmental Science, vol. 005, no. 01, pp. 026–044, Apr. 2022, doi: 10.21776/ub.civense.2022.00501.4.

V. Mishra, P. Rai, and K. Mohan, “Prediction of land use changes based on land change modeler (LCM) using remote sensing: A case study of Muzaffarpur (Bihar), India,” Journal of the Geographical Institute Jovan Cvijic, SASA, vol. 64, no. 1, pp. 111–127, 2014, doi: 10.2298/IJGI1401111M.

H. Aghsaei et al., “Effects of dynamic land use/land cover change on water resources and sediment yield in the Anzali wetland catchment, Gilan, Iran,” Science of The Total Environment, vol. 712, p. 136449, Apr. 2020, doi: 10.1016/j.scitotenv.2019.136449.

H. Zhang, B. Wang, D. L. Liu, M. Zhang, L. M. Leslie, and Q. Yu, “Using an improved SWAT model to simulate hydrological responses to land use change: A case study of a catchment in tropical Australia,” Journal of Hydrology, vol. 585, p. 124822, Jun. 2020, doi: 10.1016/j.jhydrol.2020.124822.

H. Haas, L. Kalin, and P. Srivastava, “Improved forest dynamics leads to better hydrological predictions in watershed modeling,” Science of The Total Environment, vol. 821, p. 153180, May 2022, doi: 10.1016/j.scitotenv.2022.153180.

T. K. Tibasiima, D. M. Ekyaligonza, and B. Bwambale, “Can Agroecology Provide a Panacea for Sustaining the Adoption of Soil Erosion Control Measures? A Case of Smallholder Coffea arabica Production in the Rwenzori Mountain Region, Uganda,” Sustainability, vol. 14, no. 20, p. 13461, Oct. 2022, doi: 10.3390/su142013461.

W. Abuhay, T. Gashaw, and L. Tsegaye, “Assessing impacts of land use/land cover changes on the hydrology of Upper Gilgel Abbay watershed using the SWAT model,” Journal of Agriculture and Food Research, vol. 12, p. 100535, Jun. 2023, doi: 10.1016/j.jafr.2023.100535.

Z. Zhang et al., “Effect of Check Dam on Sediment Load Under Vegetation Restoration in the Hekou-Longmen Region of the Yellow River,” Frontiers in Environmental Science, vol. 9, Jan. 2022, doi: 10.3389/fenvs.2021.823604.

Soewarno, Aplikasi Metode Statistika Untuk Analisis Data Hidrologi. Bandung: Nova, 1995.

S. Wahyuni, D. Sisinggih, and I. A. G. Dewi, “Validation of Climate Hazard Group InfraRed Precipitation with Station (CHIRPS) Data in Wonorejo Reservoir, Indonesia,” in IOP Conference Series: Earth and Environmental Science, 2021. doi: 10.1088/1755-1315/930/1/012042.

L. M. Limantara, Practical Hydrology. Bandung: Lubuk Agung, 2010.




How to Cite

A. K. Hariyanto, D. Sisinggih, and U. Andawayanti, “Analysis of Wanggu River Sedimentation Due to Land Cover Change using ArcSWAT and its Alternative Control”, CIVENSE, vol. 7, no. 1, pp. 8–18, Apr. 2024.