An Alternative Model to Estimate Total Suspended Solids Concentrations using Landsat 8 Imagery in Indonesia

Authors

  • Devy Risky Panji Wijaya Ministry of Villages, Development of Disadvantaged Regions, and Transmigration, Indonesia
  • Riyanto Haribowo Universitas Brawijaya, Indonesia
  • James E. Ball University of Technology Sydney, Australia

DOI:

https://doi.org/10.21776/civense.v6i2.404

Keywords:

Water quality, Total suspended solids, Remote sensing, Landsat 8

Abstract

A regular monitoring program of water quality is generally performed using a direct measurement method, which requires substantial efforts and resources. These issues can be minimised using several options, one of which is Landsat 8 (L8). This imagery has been broadly used to measure several water quality parameters, especially Total Suspended Solids (TSS) concentrations, even in Indonesia. This paper will compare several models from previous studies and a modified model generated using data from various sites. The comparison is based on their competencies to estimate TSS concentrations. The competencies are determined by the coefficient of correlation (r), correlation of determination (R2), and residual standard error (RSE) parameters as these three parameters are strongly correlated, generally applied, and provide distinctive determinations. The best model should have the highest r and R2 values, while the RSE value should be the lowest. The results imply that TSS model 4 generated in this study provides comparable results with TSS model 1, which has been generally used in Indonesia and provided favourable results. Thus, it can be an alternative model to estimate TSS concentrations in Indonesia.

References

Asian Development Bank, Indonesia Country Water Assessment. Manila: Asian Development Bank, 2016.

M. Gholizadeh, A. Melesse, and L. Reddi, ‘A comprehensive review on water quality parameters estimation using remote sensing techniques’, Sensors, vol. 16, no. 8, p. 1298, Aug. 2016.

S. N. Topp, T. M. Pavelsky, D. Jensen, M. Simard, and M. R. V. Ross, ‘Research trends in the use of remote sensing for inland water quality science: moving towards multidisciplinary applications’, Water, vol. 12, no. 1, p. 169, Jan. 2020.

H. Yang, J. Kong, H. Hu, Y. Du, M. Gao, and F. Chen, ‘A review of remote sensing for water quality retrieval: progress and challenges’, Remote Sens., vol. 14, no. 8, p. 1770, Apr. 2022.

L. M. Jaelani, R. Limehuwey, N. Kurniadin, A. Pamungkas, E. S. Koenhardono, and A. Sulisetyono, ‘Estimation of total suspended sediment and chlorophyll-A concentration from Landsat 8-Oli: The effect of atmospher and retrieval algorithm’, IPTEK J. Technol. Sci., vol. 27, no. 1, Apr. 2016.

N. Laili et al., ‘Development of water quality parameter retrieval algorithms for estimating total suspended solids and chlorophyll-a concentration using Landsat-8 imager at Poteran Island Water’, ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci., vol. II-2/W2, pp. 55–62, Oct. 2015.

A. Ramadianto and T. Gunawan, ‘Pemanfaatan citra penginderaan jauh untuk pemetaan kualitas air di Waduk Jatiluhur, Kabupaten Purwakarta, Provinsi Jawa Barat [Utilisation of remote sensing imagery for mapping water quality in Jatiluhur Reservoir, Purwakarta Regency, West Java Province]’, J. Bumi Indones., vol. 3, no. 3, 2014.

H. Wibisana, B. M. Soekotjo, and U. Lasminto, ‘Preliminary study of total suspended solid distribution in Coastal Ujung Pangkah Gresik based on reflectance value of Landsat satellite imagery’, Indones. J. Geogr., vol. 51, no. 1, p. 42, Apr. 2019.

J. Lim and M. Choi, ‘Assessment of water quality based on Landsat 8 operational land imager associated with human activities in Korea’, Environ. Monit. Assess., vol. 187, no. 6, p. 384, Jun. 2015.

Emiyati, A. K. S. Manoppo, and S. Budhiman, ‘Estimation on the concentration of total suspended matter in Lombok Coastal using Landsat 8 OLI, Indonesia’, IOP Conf. Ser. Earth Environ. Sci., vol. 54, p. 012073, Jan. 2017.

A. P. Estigade et al., ‘Physical waters suitability for floating net cages cultivation mapping using Landsat 8 OLI and Worldview-2 imageries in part of Hurun Bay, Lampung Province, Indonesia’, IOP Conf. Ser. Earth Environ. Sci., vol. 169, p. 012070, Jul. 2018.

T. Hariyanto, T. C. Krisna, K. Khomsin, C. B. Pribadi, and N. Anwar, ‘Developing of total suspended sediment model Using Landsat-8 satellite image and in-situ data at the Surabaya Coast, East Java, Indonesia’, Indones. J. Geogr., vol. 49, no. 1, p. 73, Jul. 2017.

I. D. Mubarok, Rifardi, and A. Tanjung, ‘Studi temporal perubahan TSS (Total Suspended Solid) di Perairan sekitar Muara Kali Porong akibat pengaruh Lumpur Lapindo berdasarkan interpretasi citra Landsat 8 OLI [Temporal study of changes in TSS’, J. Perikan. Dan Kelaut., vol. 24, no. 2, pp. 119–129, Dec. 2019.

T. B. Sanjoto, A. H. Elwafa, H. Tjahjono, and W. A. B. N. Sidiq, ‘Study of total suspended solid concentration based on Doxaran algorithm using Landsat 8 image in coastal water between Bodri River estuary up to east flood canal Semarang City’, IOP Conf. Ser. Earth Environ. Sci., vol. 561, p. 012053, Sep. 2020.

B. Sudarsono, A. Sukmono, and A. A. Santoso, ‘Analysis of vegetation density effect in Bengawan Solo Watershed to the total suspended solid (TSS) in Gajah Mungkur Reservoir’, IOP Conf. Ser. Earth Environ. Sci., vol. 165, p. 012033, Jun. 2018.

A. Sukmono, ‘Pemantauan Total Suspended Solid (TSS) Waduk Gajah Mungkur periode 2013-2017 dengan citra satelit Landsat-8’, Elipsoida J. Geod. Dan Geomatika, vol. 1, no. 01, Art. no. 01, Jul. 2018, Accessed: Aug. 09, 2021.

N. Chaichitehrani, E. L. Hestir, and C. Li, ‘Evaluation of atmospheric correction algorithms for Landsat-8 OLI and MODIS-Aqua to study sediment dynamics in the Northern Gulf of Mexico’, Adv. Remote Sens., vol. 07, no. 02, pp. 101–124, 2018.

M. Ellero, ‘Water quality assessment using Landsat 8 and Sentinel-2: A case study of the Umdloti Estuary, KwaZulu-Natal, South Africa’, Master’s thesis, University of KwaZulu-Natal, KwaZulu- Natal, 2018.

L. Lymburner et al., ‘Landsat 8: Providing continuity and increased precision for measuring multi-decadal time series of total suspended matter’, Remote Sens. Environ., vol. 185, pp. 108–118, Nov. 2016.

L. G. Olmanson, P. L. Brezonik, J. C. Finlay, and M. E. Bauer, ‘Comparison of Landsat 8 and Landsat 7 for regional measurements of CDOM and water clarity in lakes’, Remote Sens. Environ., vol. 185, pp. 119–128, Nov. 2016.

Y. O. Ouma, K. Noor, and K. Herbert, ‘Modelling reservoir chlorophyll-a, TSS, and turbidity using Sentinel-2A MSI and Landsat-8 OLI satellite sensors with empirical multivariate regression’, J. Sens., vol. 2020, pp. 1–21, Sep. 2020.

J. Chen, W.-N. Zhu, Y. Q. Tian, and Q. Yu, ‘Estimation of colored dissolved organic matter from Landsat-8 imagery for complex inland water: case study of Lake Huron’, IEEE Trans. Geosci. Remote Sens., vol. 55, no. 4, pp. 2201–2212, Apr. 2017.

T. Hariyanto, C. B. Pribadi, and H. Elya, ‘Validasi kondisi perairan berdasarkan nilai Total Suspended Solid (TSS) menggunakan data citra satelit Landsat 8 dan data insitu (Studi kasus: Pantai Timur Surabaya), Geoid, vol. 13, no. 1, p. 15, Mar. 2018.

A. W. Hastuti, E. Susilo, and A. Wijaya, ‘Distribusi muatan padatan tersuspensi perairan Probolinggo menggunakan citra Landsat-8, in Seminar Nasional Penginderaan Jauh ke-4 Tahun 2017, Depok, West Java, Indonesia: Lembaga Penerbangan dan Antariksa Nasional, Oct. 2017, pp. 301–306.

L. A. Karondia and L. M. Jaelani, ‘Validasi algoritma estimasi Total Suspended Solid dan Chl-a pada citra satelit Aqua MODIS dan Terra MODIS dengan data in situ (Studi kasus : Laut Utara Pulau Jawa)’, Geoid, vol. 11, no. 1, p. 46, Aug. 2015.

B. A. Prasetiyo, B. Rochaddi, and A. Satriadi, ‘Aplikasi citra Sentinel-2 untuk pemetaan sebaran material padatan tersuspensi di muara Sungai Wulan Demak, J. Mar. Res., vol. 8, no. 4, Art. no. 4, Oct. 2019.

B. M. Sukojo and N. C. Amalina, ‘Analisis perubahan konsestrasi Total Ssuspended Solid (TSS) di Teluk Lamong menggunakan citra Landsat multitemporal’, Geoid, vol. 15, no. 1, p. 28, Mar. 2020.

M. Mubarak, ‘Coastline changes in North Bengkalis Island, Indonesia: satellite imagery analysis and observation’, J. Degraded Min. Lands Manag., vol. 5, no. 2, pp. 1127–1132, Jan. 2018.

Nurgiantoro et al., ‘Assessment of atmospheric correction results by iCOR for MSI and OLI data on TSS concentration’, IOP Conf. Ser. Earth Environ. Sci., vol. 389, p. 012001, Dec. 2019.

N. Nurgiantoro and L. M. Jaelani, ‘Monitoring of total suspended solid in coastal waters due to conventional gold mining using multi temporal satellite data, Case study: Bombana, Southeast Sulawesi’, IPTEK J. Proc. Ser., vol. 0, no. 2, p. 83, May 2017.

K. I. Suniada and L. Y. Aden, ‘Pengaruh perubahan luas hutan mangrove terhadap konsentrasi Total Suspended Matter (TSM) di Muara Perancak, Jembrana – Bali’, J. Kelaut. Nas., vol. 14, no. 1, Apr. 2019.

‘EarthExplorer’. https://earthexplorer.usgs.gov/ (accessed Dec. 28, 2021).

D. Helder et al., ‘Observations and recommendations for the calibration of Landsat 8 OLI and Sentinel 2 MSI for improved data interoperability’, Remote Sens., vol. 10, no. 9, p. 1340, Aug. 2018.

E. Knight and G. Kvaran, ‘Landsat-8 operational land imager design, characterization and performance’, Remote Sens., vol. 6, no. 11, pp. 10286–10305, Oct. 2014.

U.S. Geological Survey, Landsat 8 (L8) Data Users Handbook Version 5.0. South Dakota: Department of the Interior, U.S. Geological Survey, 2019.

P. Sedgwick, ‘A comparison of parametric and non-parametric statistical tests’, BMJ, vol. 350, no. apr17 1, pp. h2053–h2053, Apr. 2015.

D. Sheskin, Handbook of parametric and nonparametric statistical procedures, 3rd ed. Boca Raton: Chapman & Hall/CRC, 2004.

E. Van Buren and A. H. Herring, ‘To be parametric or non‐parametric, that is the question: Parametric and non‐parametric statistical tests’, BJOG Int. J. Obstet. Gynaecol., vol. 127, no. 5, pp. 549–550, Apr. 2020.

Z. Y. Avdan, G. Kaplan, S. Goncu, and U. Avdan, ‘Monitoring the water quality of small water bodies using high-resolution remote sensing data’, ISPRS Int. J. Geo-Inf., vol. 8, no. 12, p. 553, Dec. 2019.

M. Modiegi, I. T. Rampedi, and S. G. Tesfamichael, ‘Comparison of multi-source satellite data for quantifying water quality parameters in a mining environment’, J. Hydrol., vol. 591, p. 125322, Dec. 2020.

H. Wibisana, S. Zainab, and A. Dara K., ‘Optimalisation of remote sensing algorithm in mapping of chlorophyl-a concentration at Pasuruan coastal based on surface reflectance images of Aqua Modis’, J. Phys. Conf. Ser., vol. 953, p. 012224, Jan. 2018.

J. Schmuller, Statistical analysis with R for dummies. in Learning made easy. Hoboken, NJ: John Wiley & Sons, Inc, 2017.

K. Mosimanegape, ‘Integration of physicochemical assessment of water quality with remote sensing techniques for the Dikgathong Dam in Botswana’, Master’s thesis, University of Zimbabwe, Harare, 2016.

N. J. Horton and K. Kleinman, Using R and RStudio for data management, statistical analysis, and graphics, Second edition. Boca Raton: CRC Press, Taylor & Francis Group, 2015.

P. Schober, C. Boer, and L. A. Schwarte, ‘Correlation coefficients: Appropriate use and interpretation’, Anesth. Analg., vol. 126, no. 5, pp. 1763–1768, May 2018.

M. Azharuddin, I. Usman, and Nurgiantoro, ‘Studi perbandingan pemodelan algoritma Chl-a menggunakan data Citra L8 Dan S2b’, JAGAT J. Geogr. Apl. Dan Teknol., vol. 4, no. 1, pp. 25–38, Apr. 2020.

A. H. Baktiar, A. P. Wijaya, and A. Sukmono, ‘Analsis kesuburan dan pencemaran air berdasarkan kandungan klorofil-a dan konsentrasi Total Suspended Solid secara multitemporal di Muara Banjir Kanal Timur’, J. Geod. Undip, vol. 5, no. 4, Art. no. 4, Nov. 2016.

R. Dewi, M. Zainuri, S. Anggoro, T. Winanto, and H. Endrawati, ‘Spatio-temporal distribution of chlorophyll-a using multitemporal Landsat image and ground check in Segara Anakan Lagoon’, E3S Web Conf., vol. 47, p. 03007, 2018.

B. Hamuna and L. Dimara, ‘Pendugaan konsentrasi klorofil-a dari citra satelit Landsat 8 di perairan kota Jayapura’, Maspari J., vol. 9, no. 2, pp. 139–148, Jul. 2017.

M. Nuzapril, S. B. Susilo, and J. P. Panjaitan, ‘Estimasi produktivitas primer perairan berdasarkan konsentrasi klorofil-a yang diekstrak dari citra satelit Landsat-8 di perairan Kepulauan Karimun Jawa’, J. Penginderaan Jauh Dan Pengolah. Data Citra Digit., vol. 14, no. 1, Sep. 2017.

D. N. Moriasi, M. W. Gitau, N. Pai, and P. Daggupati, ‘Hydrologic and water quality models: performance measures and evaluation criteria’, Am. Soc. Agric. Biol. Eng., vol. 58, no. 6, pp. 1763–1785, Dec. 2015.

D. G. Jenkins and P. F. Quintana-Ascencio, ‘A solution to minimum sample size for regressions’, PLOS ONE, vol. 15, no. 2, Feb. 2020.

M. A. P. Fanela, N. D. Takarina, and Supriatna, ‘Distribution of Total Suspended Solids (TSS) and chlorophyll-a in Kendari Bay, Southeast Sulawesi’, J. Phys. Conf. Ser., vol. 1217, p. 012150, May 2019.

W. A. Pratikto et al., ‘The study of coastline changing and total suspended solid distribution based on the remote sensing data in Teluk Lamong Multipurpose Port Terminal’, IOP Conf. Ser. Earth Environ. Sci., vol. 698, no. 1, p. 012046, Mar. 2021.

Downloads

Published

2023-10-14

How to Cite

[1]
D. R. P. Wijaya, R. Haribowo, and J. E. Ball, “An Alternative Model to Estimate Total Suspended Solids Concentrations using Landsat 8 Imagery in Indonesia”, CIVENSE, vol. 6, no. 2, pp. 124–133, Oct. 2023.

Issue

Section

Articles