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A B S T R A C T   
 

In Indonesia, rainfall is still significant spatially and temporally. To gain optimal results from utilizing 

water resources, we have to ensure that the precipitation data is provided in good quality and quantity. 

Several spatial rainfall measurement sources, such as GPM data (Global Precipitation Measure), have 

become available in recent years. This study evaluated the GPM IMERG V.06 product using rain gauge 

measurements in the Lau Simeme watershed in North Sumatra Province, Indonesia. The relevance of the 

GPM IMERG was tested by direct comparison with observations at different time scales (daily, monthly, 

annual, and seasonal) between 2005 and 2019. Results show that the satellite product provides poor 

rainfall estimations at the daily and annual time scales. However, the accuracy of GPM IMERG Final 

datasets is improved when temporally average to monthly timescale (R2 of 0.728, RMSE of 68.318 mm 

and NSE of 0.725), wet seasonal time scale (R2 of 0.673, RMSE of 79.287 mm and NSE of 0.658) and dry 

seasonal time scale (R2 of 0.947, RMSE of 20.356 mm and NSE of 0.924). 
 

 

 
1. Introduction 

 
The quantification of water resources is a significant 

point globally [1]. In Indonesia, water resource 

management is one of the main issues still under 

discussion by the government. The reason is that many 

parts of Indonesia still have not received water. Utama [2] 

reports that the Indonesian government has predicted a 

shortage of clean water in Java, one of Indonesia’s major 

islands, by 2040. Kompas.com [3] reports that some 

Indonesian territories will face water shortages in recent 

years. This situation is due to accessibility, quality, 

quantity, continuity, climate change, and water capacity. 

For example, North Sumatra, the 4th highest population 

in Indonesia, requires potable water every year. 

According to PDAM Tirtanadi (2017), 30% of the Medan 

area, one of the northern areas of Sumatra, suffers from a 

lack of clean water due to the absence of water resources.  

To calculate the water availability in a watershed, 

rainfall recorders or rainfall station must provide the 

actual ground area data. One of the problems still 

followed in the rainfall recorder is a lack of data from the 

rainfall station because of data collection failure and 

many watersheds in Indonesia still do not have a rainfall 

station at all. So it is essential to provide a series of rainfall 

data that can be used to calculate a water balance. Gourley 

and Vieux [4] emphasize that precipitation is the most 

crucial spatial input for distributed hydrological models, 

so accurate rainfall estimates over a catchment or a region 

are critical. 

In order to address this situation, the number of 

remotely sensed precipitation products with high spatial 

and temporal resolution has been developed recently [5]–

[7]. These products become the alternative solution for 

forcing data for hydrological models when the 

observation data are not readily available or not available 

enough. Moreover, they also pose new issues to be solved 

by the hydrologists applying this information to their 

studies. Global Precipitation Measurement (GPM) is a 

worldwide satellite mission to support next-production 

observations of rain and snow every three hours.  
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There are three types of GPM IMERG products, 

namely, GPM IMERG Early Run (IMERG-E), GPM IMERG 

Late Run (IMERG-L), and GPM IMERG Final Run (IMERG-

F). These products have spatial resolution 0.1◦ × 0.1◦ 

and 30 min temporal resolution. IMERG-E is a GPM 

product close to a real-time product with a latency of ~4 

hours. IMERG-L is a product of GPM, which is close to a 

real-time product with a latency of ~14 hours. Those GPM 

products are suitable for monitoring natural disasters like 

floods and cyclones. IMERG-F is a GPM product close to 

the measured-adjusted product with a latency of ~3.5 

months. According to Huffman [8], GPM IMERG-F is a 

recommended product for research because it has been 

calibrated. 

In water resources management, GPM IMERG has 

often been used globally as an alternative to predicting 

ground station rainfall data, such as by [1], [9], [10], [11], 

and [12]. In Indonesia, [13], [14], [15], [16], [17], [18], 

[19], and [20] have also conducted the same study. 

Especially for the island of Sumatra, [21], [22], [23], and 

[24] showed that GPM IMERG is one of the possible 

rainfall satellite data that can be used in imitating the 

ground station data. 

Eventually, this study will discuss the relationship 

between rainfall data on the ground station and at the 

satellite and the reasonable formula to interpret the 

relationship. Moreover, the three datasets of GPM IMERG 

products are used to define reasonable correlation for the 

ground station data. 

2. Study area, data collection, and methodology 
 

2.1. Study area and data collection 
 

Lau Simeme Reservoir is one of the Indonesian 

government projects located in the Deli Serdang region of 

North Sumatera Province. In detail, the watershed of Lau 

Simeme Reservoir is a part of the Percut watershed, 

which is at the upstream part of the Belawan Ular Padang 

River region (Figure 1). This watershed covers about + 

10.062 Ha area, and the coordinate location of the 

reservoir lies between 3°21’0.39 “N and 98°38’59.39 “E 

(Figure 2). 

Tropical climates influence Lau Simeme Watershed. 

This climate has two seasons, namely, the rainy season 

and the dry season. The two seasons are estimated to 

have the same weight at the research location. The rainy 

season starts in October-March, while the dry season 

starts in April-September. Hydrology condition in the 

Percut Watershed is influenced by several rainfall 

stations, such as Tongkoh Karo rainfall station, Kuta 

Jurung rainfall station, and Sibolangit rainfall station 

(Figure 3). Therefore, this study will cover those stations’ 

data from 2005 to 2019. 

IMERG is the GPM level 3 multi-satellite precipitation 

algorithm, which combines alternate precipitation estimates 

from all microwave configuration sensors, IR observations 

using geosynchronous satellites, and monthly precipitation 

data. The system is run more than once for each shelf life. 

The system runs multiple times for each observing time. The 

IMERG Early Run (IMERG_E) is a quick estimate (near-

time with l latency of 6 h), and the Late Run (IMERG_L) 

successively provides better estimates as more data arrive 

(reprocesses real-time with a latency of 18 h). Early Run and 

Late Run products are available in near real-time. The Final 

Run (IMERG_E) uses monthly measurement data to create 

search products (adjusted with a delay of several months). 

In this study, the IMERG V06 products (IMERG_E, 

IMERG_L, and IMERG_F) at daily and half-hourly scales, 

published in 2019, are used to analyze the available 

rainfall events, heavy rainfall events, and extreme 

precipitation events from 2005 to 2019. The IMERG data 

could be obtained from https://giovanni.gsfc.nasa.gov/. 

 

 

Fig. 1. Percut Watershed. 
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Fig. 1. Lausimeme Watershed. 
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Fig. 3. Rainfall Station. 

 

2.2 Methodology 
 
This study will compare GPM IMERG data with ground 

station data to determine the relationship between the two 

data. The first thing to do is to do a statistical check for both 

data. The results of this examination will determine 

whether the two data are consistent, stable, and persistent. 

The statistical tests used are consistency tests, trend tests, 

stationary tests, and persistency tests.  

Furthermore, to equalize the comparison, the two data 

are converted into the mean rainfall area using Thiessen 

polygon analysis. It is used because Goodrich et al. [25] and 

Woods et al. [26] state that although the spatial variability 

of rainfall plays an essential role in the process of runoff 

formation, rainfall modeled in Polygon Thiessen is usually 

assumed to be uniform for smaller common catchments. 

The best correlation between the two data will be 

determined based on statistical metrics, which contain 

Correlation Coefficient (r), Root Mean Square Error 

(RMSE), Nash Sutcliffe Error (NSE), and Percent Bias 

(PBias) (Table 1). r describes the agreement between 

IMERG data and rain gauge data. Moreover, r is also used 

to determine the best variable order in multiple regression. 

PBias is used to describe the systematic bias of IMERG 

products. A smaller absolute value of bias indicates a minor 

deviation. Positive values indicate an overestimation of the 

amount of precipitation, while negative values mean an 

underestimation. RMSE measures the average absolute 

error magnitude of the IMERG products. The smaller 

RMSE, the closer the IMERG data is to the rain gauge data. 

The Nash-Sutcliffe Efficiency is a standardized statistic that 

defines the relative amount of the residual difference 

compared to the calculated data variance [27]. NSE values 

range from -∞ to 1. When the values are negative, the 

model performance is unacceptable. When the values are 

equal to 1, it means the models are perfectly matched with 

the observed data, and when the values are 0, the models 

are as accurate as the empirical data [28], [29]. 

In order to get the best formula for the two data 

relationships, calibration and validation were carried out. 

The purpose of this equation is to further research in 

predicting the value of rainfall in the following years so 

that it can support the calculation of inflow at the Lau 

Simeme dam. In detail, the data are separated into two 

types of data, namely calibration data and validation data. 

 

Table 1.  
Statistical metrics. 
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Name/ Symbol Formula Perfect Value 

Correlation Coefficient (r) ∑ (𝑂𝑖 − 𝑂̅)(𝑂𝑖 − 𝑃̅)𝑛
1

√∑ (𝑂𝑖 − 𝑂̅)𝑛
1

2 √∑ (𝑃𝑖 − 𝑃̅)𝑛
1

2

 
1 

Root Mean Square Error (RMSE) 

√
1

𝑛
∑ (𝑂𝑖 − 𝑃𝑖)

2
𝑛

1
 

0 

Nash Sutcliffe Error (NSE) 
1 −

∑ (𝑂𝑖 − 𝑃𝑖)
2𝑛

1

∑ (𝑂𝑖 − 𝑂̅)2𝑛
1

 
1 

Percent Bias (PBias) 
[
∑ (𝑂𝑖 − 𝑃𝑖) 𝑥 100𝑛

1

∑ 𝑂𝑖
𝑛
1

] 
0 
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Table 2.  
Calibration and validation data types. 

Test Calibration Validation 
Scenario 1 10 years 5 years 
Scenario 2 12 years 3 years 
Scenario 3 14 years 1 year 

 

 
Calibration for single variable 

The method uses the Excel program for calibration 

processes that use single variables, such as linear, 

exponential, logarithmic, polynomial and power 

regression. In this process, data will be collected in the 

Excel program and plotted in a scatter plot diagram. The 

plot results will show the best coefficient of determination 

with the approach formula as a reflection of the 

relationship between the two data. 

 
Calibration for multiple variables 

For calibration processes that use multiple variables, 

such as multiple linear, the process uses a Genetic 

Algorithm (GA) method. This method will be applied using 

Matlab R2021a. GA is a haphazard search and optimization 

method based on the evolutionary process of natural 

collection and genetics [30]. The idea of GA is that every 

point in a search section is assigned a qualification 

according to an objective purpose. Then the finest can be 

approached by starting with a pool of arbitrary solutions 

and sprouting these solutions continuously with genetic 

hands; the series generated from routes of solutions that 

derive closer and closer to the optimum [31].  

In the genetic algorithm, each nominee’s result is called 

a chromosome. The collection of all nominee results is 

called the population. The population size is a constraint 

that defines the number of nominee results. As the 

population develops from invention to invention, weak 

solutions tend to vanish, and decent solutions tend to 

generate well solutions. So first, the preliminary 

population is randomly produced, considering 

problematic constraints. The value that defines how 

excellent a chromosome is for an optimum solution is 

called a fitness value. In the GA, the fitness value of the 

result improves its prospects of being chosen for selection, 

mutation, crossover, and elitism processes to create a new 

population. 

Defining the interactions between the various 

parameters of GA impacts the quality of the solution, and 

keeping the values of the parameters “balanced” enhances 

the solution of the GA. GA uses four basic and important 

parameters: crossover rate, mutation rate, population size, 

elitism ratio, and the number of generations. In this study, 

the GA parameters can be shown in Table 3. 

 

 

 

 

3. Result and discussion 

 

3.1 Choosing the best correlation 

 
This section compares ground station data and satellite 

station data to determine the largest correlation that 

reflects the relationship between the two data. This 

comparison is applied to daily, monthly, annual, and 

seasonal data. In order to determine the highest 

correlation, the coefficient correlation equation is applied. 

The result can be seen in Table 4. 

In Table 4, Figure 4, Figure 5, and Figure 6, the 

correlation between the ground station and the GPM 

IMERG shown at the daily and annual stages is weak, with 

a value below 0.5. It indicates that the IMERG GPM will be 

unable to represent the value of the ground station at this 

stage. This low satellite station value is probably due to the 

rapid displacement of clouds and space and the temporal 

distribution of precipitation influenced by storm events 

within the study area [1]. 

In contrast, the correlation between those data 

regarding the monthly, wet, and dry seasons shows 

excellent relationships where the values are between 0.6 

and 0.8. It means that the GPM IMERG can interpret the 

ground station value well. It can be seen that the 

relationship between the ground station and GPM IMERG 

F is the highest correlation. In terms of the monthly stage 

and the wet stage, they stand at 0.79. In terms of the dry 

stage, it lies at 0.77. It means that those correlations are 

strong. Overall, it can be seen that the movement of the 

data from those graphs fluctuates in Figure 4, Figure 5, and 

Figure 6. It means that those data are reasonably 

distributed in monthly, wet, and dry steps.  

Therefore, the best GPM IMERG data that can interpret 

the calibration and validation of the ground station in Lau 

Simeme Watershed is the GPM IMERG Final dataset from 

monthly step, wet, and dry seasonal steps. 

 

Table 3.  
GA parameters. 

Control Test 1 Test 2 Test 3 
Number of Chromosomes (M) 20 30 50 
Maximum Generation 100 500 1000 
Crossover ratio 0.8 0.8 0.8 
Mutation ratio 0.2 0.2 0.2 
Elitism ratio 0.2 0.2 0.2 
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Table 4.  
Correlation coefficient for every time step. 

Comparison 
Pearson Coefficient Correlation (r) 

Daily Monthly Annual Wet Season Dry Season 
Groundstation – GPM IMERG E 0.25 0.64 0.25 0.69 0.63 
Groundstation – GPM IMERG L 0.25 0.65 0.31 0.70 0.64 
Groundstation – GPM IMERG F 0.26 0.79 0.26 0.79 0.77 

 

Fig. 2. Monthly step correlation. 
 

 

Fig. 3. Wet season step correlation. 
 

 

Fig. 4. Dry season step correlation. 
 

3.2 Calibration and validation result 

 
In order to define the relationship between the ground 

station and GPM IMERG data, it is important to model the 

relationship using mathematical regression. Several 

simple regression analysis alternatives that are commonly 

used in hydrological data analysis are single regression 

and multiple regression [32]. This study applies simple 

regression, such as linear, exponential, logarithmic, 

polynomial, and power regressions, using the 

mathematical software Excel using monthly rainfall data at 

the location under review (x). The multiple regressions for 

independent variables are tested using a genetic algorithm 

method. The GA parameters are shown in Table 3. In 

addition, the order of the variables tested for each 

regression in multiple regression are monthly rainfall data 
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at the location under review (x1), monthly data on the 

average rainfall at the location under review (x2), monthly 

minimum rainfall data at the location under review (x3), 

monthly data on maximum rainfall at the location under 

review (x4). Hence, Table 5, Table 6, and Table 7 reflect the 

results of calibration and validation calculations for the 

monthly step, dry step, and wet steps, respectively, of the 

relationship between the ground station and the GPM 

IMERG satellite station.  

Based on Tables 5, Table 6, and Table 7, most of the 

relationships between the two data, the GPM IMERG and 

the ground station, can be reflected in equations with 

single and multiple variables. The results found that 99% 

of the trials carried out produced satisfactory NSE and R2 

values with values above 0.5. It shows that the resulting 

equation is reasonably good for interpreting the data on 

the ground station. In Table 5, the validation process for 

the equation with one variable for the monthly stage, it is 

found that the linear regression in monthly scenario 2, 

with 12 years of calibration data and three years of 

validation data, gave a very satisfactory interpretation of 

NSE and R2 with an NSE value of 0.725. In Table 6 and 

Table 7, the wet and dry seasons, it is found that the linear 

regression in wet scenario one and the power regression 

in dry scenario 3 gave very satisfactory NSE and R2 values 

with NSE values of 0.662 and 0.924, respectively.  

In Table 5, the validation process for equations with 

multiple variables for monthly stages, it is found that the 

equation in monthly scenario one with three variables 

produces the best NSE and R2 values with NSE values of 

0.694. In Table 6, the wet season, it is found that the 

regression with variable 3 in wet scenario 1 gave very 

satisfactory NSE and R2 values with an NSE value of 0.658. 

In Table 7, the dry season, it is found that the regression 

with variable 4 in dry scenario 2 gave very satisfactory NSE 

and R2 values with an NSE value of 0.836. 

Overall, the results reflect that a good NSE value in the 

calibration process does not yet mean a good NSE value in 

the validation process. In other words, the results obtained 

in the calibration process are not directly proportional to 

those obtained in the validation process. Even though 

those tables show that the ground station value (the 

corrected GPM IMERG) on the Lau Simeme Watershed can 

be obtained using the GPM IMERG final dataset on a 

monthly and seasonal scale with one or multiple variables. 

Table 5.  
Calibration and validation results for monthly data. 

Variable 
Regression 

types 
Equation 

Calibration result Validation result 

R2 RMSE NSE PBIAS R2 RMSE NSE PBIAS 

Monthly Scenario 1 (10 years calibration vs 5 years validation) 

Single 
Variable  

Linear y = 1.1802x + 28.841 0.59 91.982 0.589 -0.002 0.645 73.465 0.633 1.823 

Logarithmic y = 273.05ln(x) - 1162.9 0.563 94.887 0.563 0.011 0.626 75.12 0.616 0.702 

Exponential y = 115.36e0.0038x 0.553 98.26 0.531 1.462 0.612 80.966 0.554 3.804 

Polynomial y = -0.0002x2 + 1.2845x + 16.209 0.589 91.961 0.589 0.227 0.645 73.429 0.633 2.019 

Power y = 2.0682x0.9103 0.59 92.664 0.583 3.246 0.645 72.335 0.644 4.97 

Multiple 
Variable 
(2 
Variable) 

Test 1 y = 32.12 + 1.41 x1 - 7.14 x2 0.589 91.972 0.589 -0.033 0.722 73.442 0.681 7.423 

Test 2 y = 31.26 + 1.26 x1 - 2.73 x2 0.589 91.970 0.589 0.000 0.722 73.442 0.681 7.423 

Test 3 y = 21.16 + 2.09 x1 - 23.63 x2 0.589 91.966 0.589 0.000 0.722 73.442 0.681 7.423 

Multiple 
Variable 
(3 
Variable) 

Test 1 y = 15.94 + 0.30 x1 + 26.57 x2 + 70.14 x3 0.596 91.226 0.596 0.093 0.699 71.961 0.694 0.954 

Test 2 y = 38.71 + 1.17 x1 - 2.28 x2 + 95.07 x3 0.603 90.436 0.603 -0.003 0.681 74.396 0.673 -0.392 

Test 3 y = 36.90 + 1.26 x1 - 4.92 x2 + 97.56 x3 0.603 90.421 0.603 0.000 0.680 74.881 0.668 -0.451 

Multiple 
Variable 
(4 
Variable) 

Test 1 
y = 40.35 + 0.73 x1 + 15.99 x2 + 44.79 x3 - 
0.89 x4 

0.615 89.111 0.614 0.106 0.694 72.041 0.693 -0.116 

Test 2 
y = 54.71 + 0.44 x1 + 25.92 x2 + 82.39 x3 - 
1.60 x4 

0.616 88.937 0.616 0.037 0.646 78.617 0.635 -1.978 

Test 3 
y = 60.68 + 1.47 x1 - 5.66 x2 + 62.62 x3 - 1.54 
x4 

0.62 88.458 0.62 0.005 0.657 77.089 0.649 -2.009 

Monthly Scenario 2 (12 years calibration vs 3 years validation) 

Single 
Variable  

Linear y = 1.2222x + 21.786 0.628 87.449 0.628 0.003 0.728 68.318 0.725 -2.741 

Logarithmic y = 281.67ln(x) - 1206.8 0.595 91.262 0.595 -0.011 0.689 73.342 0.683 -3.885 

Exponential y = 115.07e0.0038x 0.594 93.145 0.578 2.921 0.7 73.765 0.68 0.648 

Polynomial y = -3E-05x2 + 1.238x + 19.874 0.628 87.448 0.628 0.03 0.728 68.519 0.724 -2.72 

Power y = 1.9407x0.9241 0.628 88.145 0.622 3.011 0.728 70.455 0.708 0.289 

Multiple 
Variable 
(2 
Variable) 

Test 1 y = 7.14 + 0.50 x1 - 23.10 x2 0.585 88.318 0.621 0.385 0.659 71.822 0.647 -1.761 

Test 2 y = 34.97 + 1.76 x1 - 17.61 x2 0.588 87.376 0.629 -0.111 0.631 75.101 0.615 -3.304 

Test 3 y = 28.51 + 1.58 x1 - 11.57 x2 0.589 87.341 0.629 0.000 0.636 74.533 0.620 -3.040 

Multiple 
Variable 
(3 
Variable) 

Test 1 y = 38.01 + 2.14 x1 - 31.39 x2 + 84.13 x3 0.599 85.992 0.640 1.169 0.577 86.581 0.488 -5.368 

Test 2 y = 35.02 + 1.44 x1 - 9.64 x2 + 98.84 x3 0.603 85.479 0.645 -0.018 0.582 87.576 0.476 -6.547 

Test 3 y = 37.44 + 1.46 x1 - 10.75 x2 + 101.18 x3 0.603 85.475 0.645 0.000 0.579 87.980 0.471 -6.639 
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Variable 
Regression 

types 
Equation 

Calibration result Validation result 

R2 RMSE NSE PBIAS R2 RMSE NSE PBIAS 

Multiple 
Variable 
(4 
Variable) 

Test 1 
y = 30.22 + 1.62 x1 - 8.53 x2  + 64.46 x3 - 1.13 
x4 

0.619 84.442 0.653 0.446 0.588 87.34 0.479 -6.779 

Test 2 
y = 30.18 + 0.77 x1 + 20.65 x2 + 63.69 x3 - 
1.83 x4 

0.647 85.364 0.646 -0.052 0.592 87.949 0.471 -7.703 

Test 3 
y = 30.83 + 0.94 x1 + 12.03 x2 + 78.54 x3 - 
1.16 x4 

0.686 84.467 0.653 0.016 0.592 87.379 0.478 -7.232 

Monthly Scenario 3 (14 years calibration vs 1 years validation) 

Single 
Variable  

Linear y = 1.2138x + 21.935 0.629 85.507 0.629 0 0.638 74.221 0.626 1.071 

Logarithmic y = 283.13ln(x) - 1217.5 0.6 88.796 0.6 0.006 0.557 79.954 0.566 0.379 

Exponential y = 114.97e0.0038x 0.592 91.525 0.575 2.568 0.685 80.727 0.558 2.428 

Polynomial y = -0.0002x2 + 1.3222x + 8.7282 0.63 85.481 0.629 0.067 0.632 74.686 0.622 1.242 

Power y = 1.8722x0.9296 0.63 86.109 0.624 2.905 0.634 74.661 0.622 3.965 

Multiple 
Variable 
(2 
Variable) 

Test 1 y = 27.55 + 1.52 x1 - 9.74 x2 0.629 85.484 0.629 -0.246 0.074 144.384 -0.474 
-
17.353 

Test 2 y = 27.53 + 1.43 x1 - 7.12 x2 0.629 85.474 0.629 -0.001 0.075 143.516 -0.457 
-
16.979 

Test 3 y = 25.56 + 1.42 x1 - 6.56 x2 0.629 85.472 0.629 0.000 0.075 143.796 -0.462 
-
17.016 

Multiple 
Variable 
(3 
Variable) 

Test 1 y = 19.41 + 1.22 x1 - 0.65 x2 + 49.83 x3 0.638 84.589 0.637 -0.282 0.071 147.642 -0.542 
-
17.797 

Test 2 y = 26.48 + 1.11 x1 + 1.45  x2 + 66.75 x3 0.638 84.477 0.638 0.050 0.069 146.547 -0.519 
-
17.295 

Test 3 y = 32.53 + 1.34 x1 - 6.36 x2 + 67.26 x3 0.638 84.424 0.638 0.000 0.066 146.717 -0.522 
-
17.443 

Multiple 
Variable 
(4 
Variable) 

Test 1 
y = 27.06 + 3.14 x1 - 59.22 x2 + 50.03 x3 - 
0.08 x4 

0.623 87.421 0.612 0.668 0.046 154.959 -0.698 
-
18.607 

Test 2 
y = 40.66 + 1.76 x1 - 14.61 x2 + 32.97 x3 - 
0.96 x4 

0.646 83.591 0.646 0.236 0.052 152.739 -0.65 
-
19.251 

Test 3 
y = 38.97 + 1.21 x1 + 1.25 x2 + 55.35 x3 - 0.83 
x4 

0.647 83.381 0.647 0.005 0.057 151.298 -0.619 
-
18.922 

 

Table 6.  
Calibration and Validation results for wet season data. 

Variable 
Regression 

types 
Equation 

Calibration result Validation result 

R2 RMSE NSE PBIAS R2 RMSE NSE PBIAS 

Wet Season Scenario 1 (10 years calibration vs 5 years validation) 

Single 
Variable  

Linear y = 1.1712x + 36.531 0.615 99.594 0.615 0.001 0.666 78.952 0.662 2.027 

Logarithmic y = 278.96ln(x) - 1182.8 0.61 100.34 0.609 0.018 0.627 83.309 0.623 -0.439 

Exponential y = 112.69e0.0038x 0.556 111.288 0.519 2.683 0.638 87.324 0.586 6.939 

Polynomial y = -0.0009x2 + 1.6924x - 26.454 0.621 98.83 0.621 -0.54 0.658 79.504 0.657 0.674 

Power y = 1.718x0.9459 0.617 100.079 0.611 3.12 0.665 80.641 0.647 5.009 

Multiple 
Variable 
(2 
Variable) 

Test 1 y = 26.72 + 0.97 x1 + 7.03 x2 0.613 99.817 0.613 -0.285 0.667 78.741 0.663 1.943 

Test 2 y = 50.13 + 1.66 x1 - 15.87 x2 0.616 99.412 0.616 0.002 0.658 79.569 0.656 1.606 

Test 3 y = 53.17 + 1.64 x1 - 15.61 x2 0.616 99.404 0.616 0.000 0.658 79.613 0.656 1.602 

Multiple 
Variable 
(3 
Variable) 

Test 1 y = 16.41 + 1.08 x1 + 3.65 x2 + 93.18 x3 0.634 97.374 0.632 -0.507 0.673 79.287 0.658 0.669 

Test 2 y = 58.12 + 1.69 x1 - 19.15 x2 + 93.89 x3 0.637 96.678 0.637 0.033 0.664 79.435 0.657 0.524 

Test 3 y = 59.31 + 1.56 x1 - 16.09 x2 + 129.87 x3 0.639 96.433 0.639 0.000 0.660 80.810 0.645 0.174 

Multiple 
Variable 
(4 
Variable) 

Test 1 
y = 13.70 + 1.93 x1 - 13.80 x2 + 24.53 x3 - 
1.33 x4 

0.635 100.049 0.611 -0.235 0.639 85.113 0.606 0.434 

Test 2 
y = 15.10 + 0.64 x1 + 25.92 x2 + 82.39 x3 - 
0.53 x4 

0.637 96.894 0.636 0.024 0.665 80.14 0.651 1.267 

Test 3 
y = 58.27+ 0.96 x1 - 7.05 x2 + 99.33 x3 - 0.94 
x4 

0.643 95.9 0.643 -0.121 0.653 80.716 0.646 0.363 

Wet Scenario 2 (12 years calibration vs 3 years validation) 

Single 
Variable  

Linear y = 1.2286x + 23.506 0.651 95 0.651 0.004 0.478 86.093 0.441 -0.556 

Logarithmic y = 289.69ln(x) - 1240.6 0.636 97.025 0.636 0.013 0.438 86.542 0.435 -2.946 

Exponential y = 110e0.0039x 0.591 106.777 0.559 3.137 0.481 98.903 0.262 4.285 

Polynomial y = -0.0008x2 + 1.6549x - 27.937 0.655 94.568 0.654 1.007 0.466 85.639 0.446 -0.301 

Power y = 1.5193x0.9693 0.652 95.496 0.647 2.941 0.477 86.706 0.433 2.091 

Multiple 
Variable 
(2 
Variable) 

Test 1 y = 31.55 + 2.28 x1 - 31.91 x2 0.652 95.460 0.647  0.451 92.529 0.334 -1.939 

Test 2 y = 31.18 + 1.47 x1 - 8.05 x2 0.652 94.799 0.652 -0.027 0.471 86.906 0.412 -0.780 

Test 3 y = 40.00 + 1.72 x1 - 16.39 x2 0.653 94.728 0.653 0.000 0.464 87.745 0.401 -0.936 
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Variable 
Regression 

types 
Equation 

Calibration result Validation result 

R2 RMSE NSE PBIAS R2 RMSE NSE PBIAS 

Multiple 
Variable 
(3 
Variable) 

Test 1 y = 69.59 + 1.88 x1 - 24.82 x2 + 47.53 x3 0.669 92.759 0.667 -1.026 0.457 89.197 0.381 -2.163 

Test 2 y = 48.32 + 1.31 x1 - 6.91 x2 + 96.69 x3 0.678 91.347 0.677 0.137 0.467 90.075 0.369 -1.008 

Test 3 y = 53.31 + 1.59 x1 - 16.21 x2 + 130.04 x3 0.680 90.944 0.680 0.000 0.454 94.646 0.303 -1.688 

Multiple 
Variable 
(4 
Variable) 

Test 1 
y = 12.75 + 1.04 x1 + 4.08 x2 + 87.75 x3 + 
0.30 x4 

0.669 92.623 0.668 -0.631 0.481 90.596 0.362 -1.708 

Test 2 
y = 33.68 + 1.44 x1 - 6.79 x2 + 93.04 x3 - 
0.50 x4 

0.681 90.88 0.68 0.271 0.46 94.14 0.311 -1.388 

Test 3 
y = 63.98 + 1.56 x1 - 12.07 x2 + 99.47 x3 - 
0.81 x4 

0.683 90.498 0.683 -0.178 0.447 94.162 0.31 -1.766 

Wet Scenario 3 (14 years calibration vs 1 years validation) 

Single 
Variable  

Linear y = 1.2057x + 28.405 0.635 92.729 0.634 0.002 0.56 99.69 0.512 4.29 

Logarithmic y = 286.58ln(x) - 1226.4 0.623 94.148 0.623 0.001 0.463 105.931 0.448 3.511 

Exponential y = 112.74e0.0038x 0.574 103.448 0.545 3.933 0.628 110.165 0.403 5.995 

Polynomial y = -0.0009x2 + 1.6897x - 30.839 0.64 92.178 0.639 0.961 0.518 103.2 0.477 5.759 

Power y = 1.5989x0.9599 0.636 93.141 0.631 2.707 0.556 102.608 0.482 7.124 

Multiple 
Variable 
(2 
Variable) 

Test 1 y = 32.34 + 1.35 x1 - 4.55 x2 0.635 92.642 0.635 -0.086 0.553 100.456 0.504 3.992 

Test 2 y = 39.01 + 1.50 x1 - 9.75 x2 0.636 92.593 0.636 0.000 0.544 101.118 0.497 3.797 

Test 3 y = 39.01 + 1.50 x1 - 9.75 x2 0.636 92.589 0.636 0.000 0.541 101.458 0.494 3.709 

Multiple 
Variable 
(3 
Variable) 

Test 1 y = 41.84 + 1.29 x1 - 4.74 x2 + 83.01 x3 0.657 90.054 0.655 -1.566 0.556 108.989 0.416 -1.607 

Test 2 y = 61.05 + 1.74 x1 - 21.12 x2 + 99.73 x3 0.658 89.674 0.658 -0.062 0.535 112.504 0.378 -1.834 

Test 3 y = 53.20 + 1.43 x1 - 11.46 x2 + 123.54 x3 0.660 89.457 0.660 0.000 0.547 114.908 0.351 -2.487 

Multiple 
Variable 
(4 
Variable) 

Test 1 
y = 65.84 + 2.34 x1 - 34.43 x2 + 47.07 x3 - 
1.21 x4 

0.652 92.113 0.639 4.685 0.427 124.066 0.243 5.627 

Test 2 
y = 51.92 + 0.84 x1 + 13.38 x2 + 90.89 x3 - 
1.38 x4 

0.66 89.487 0.66 0.026 0.489 119.619 0.296 1.019 

Test 3 
y = 34.24 + 0.82 x1 + 13.72 x2 + 99.08 x3 - 
0.93 x4 

0.661 89.303 0.661 0.158 0.52 117.947 0.316 0.688 

 

Table 7.  
Calibration and validation results for dry season data. 

Variable 
Regression 

types 
Equation 

Calibration result Validation result 

R2 RMSE NSE PBIAS R2 RMSE NSE PBIAS 

Dry Scenario 1 (10 years calibration vs 5 years validation) 

Single 
Variable  

Linear y = 1.1693x + 26.32 0.514 83.347 0.514 0.002 0.766 55.052 0.771 1.487 

Logarithmic y = 252.31ln(x) - 1062.5 0.472 86.921 0.472 0.008 0.719 61.187 0.717 1.367 

Exponential y = 117.52e0.0037x 0.53 82.834 0.52 3.502 0.742 58.574 0.741 3.305 

Polynomial y = 0.0021x2 + 0.1254x + 144.81 0.528 82.188 0.528 -0.019 0.746 57.319 0.752 0.306 

Power y = 3.0988x0.8342 0.51 84.842 0.497 3.198 0.764 58.464 0.742 4.078 

Multiple 
Variable 
(2 
Variable) 

Test 1 y = 9.17 + 1.11 x1 + 3.60 x2 0.514 83.514 0.512 1.026 0.765 55.448 0.759 3.026 

Test 2 y = 26.80 + 1.29 x1 - 3.71 x2 0.514 83.344 0.514 0.000 0.767 54.983 0.763 1.461 

Test 3 y = 26.47 + 1.30 x1 - 3.95 x2 0.514 83.344 0.514 0.003 0.767 54.971 0.763 1.474 

Multiple 
Variable 
(3 
Variable) 

Test 1 y = 23.42 - 0.10 x1 + 37.78 x2 + 32.49 x3 0.515 83.432 0.513 1.359 0.732 58.851 0.728 1.854 

Test 2 y = 35.41 + 2.14 x1 - 31.53 x2 + 53.84 x3 0.518 83.031 0.518 -0.260 0.716 60.549 0.713 -1.008 

Test 3 y = 31.65 + 1.23 x1 - 3.59 x2 + 57.55 x3 0.520 82.859 0.520 0.000 0.712 61.289 0.705 -0.702 

Multiple 
Variable 
(4 
Variable) 

Test 1 
y = 13.70 + 1.93 x1 - 13.80 x2 + 24.53 x3 - 
1.33 x4 

0.544 81.664 0.534 3.611 0.649 68.72 0.63 -0.851 

Test 2 
y = 15.10 + 0.64 x1 + 25.92 x2 + 82.39 x3 - 
0.53 x4 

0.557 79.654 0.557 -0.141 0.664 67.835 0.639 -5.275 

Test 3 
y = 58.27+ 0.96 x1 - 7.05 x2 + 99.33 x3 - 0.94 
x4 

0.559 79.482 0.558 0.06 0.689 64.515 0.674 -3.863 

Dry Scenario 2 (12 years calibration vs 3 years validation) 

Single 
Variable 
  
  
  

Linear y = 1.1906x + 25.99 0.563 78.99 0.563 0 0.738 57.294 0.741 -5.922 

Logarithmic y = 259.09ln(x) - 1094.6 0.513 83.373 0.513 0.005 0.712 60.053 0.715 -5.984 

Exponential y = 120.56e0.0037x 0.577 78.016 0.573 2.214 0.702 61.326 0.703 -4.783 

Polynomial y = 0.0018x2 + 0.2907x + 130.46 0.575 77.876 0.575 -0.723 0.718 61.619 0.7 -7.502 

Power y = 3.0669x0.8391 0.557 80.547 0.545 2.973 0.738 55.995 0.753 -3.173 

Multiple 
Variable 
(2 
Variable) 

Test 1 y = 33.27 + 1.45 x1 - 8.76 x2 0.563 78.963 0.563 0.019 0.738 57.397 0.712 -6.169 

Test 2 y = 27.46 + 1.81 x1 - 18.91 x2 0.563 78.917 0.563 0.005 0.738 57.459 0.712 -6.168 

Test 3 y = 27.68 + 1.79 x1 - 18.28 x2 0.563 78.917 0.563 0.000 0.738 57.458 0.712 -6.172 



B.M. Hutagaol et al. 

Civil and Environmental Science Journal 
Vol. 06, No. 01, pp. 033-042, 2023 

 

 

 
41 

Variable 
Regression 

types 
Equation 

Calibration result Validation result 

R2 RMSE NSE PBIAS R2 RMSE NSE PBIAS 

Multiple 
Variable 
(3 
Variable) 

Test 1 y = 19.48 + 0.69 x1 + 53.98 x2 + 15.00 x3 0.564 78.907 0.563 0.207 0.717 67.007 0.608 -9.390 

Test 2 y = 31.26 + 2.17 x1 - 31.00 x2 + 41.90 x3 0.566 78.661 0.566 0.040 0.721 64.400 0.638 -9.467 

Test 3 y = 31.50 + 1.72 x1 - 17.61 x2 + 46.94 x3 0.567 78.618 0.567 0.000 0.719 65.325 0.627 -9.735 

Multiple 
Variable 
(4 
Variable) 

Test 1 
y = 11.42 + 0.17 x1 + 39.49 x2 - 14.21 x3 - 
1.28 x4 

0.583 77.335 0.581 0.118 0.74 60.547 0.68 -8.096 

Test 2 
y = 35.66 - 1.62 x1 + 90.71 x2 + 38.12 x3 - 
1.45 x4 

0.567 78.625 0.567 0.06 0.73 69.834 0.574 
-
12.547 

Test 3 
y = 40.81 + 0.96 x1 + 12.73 x2 + 31.65 x3 - 
1.56 x4 

0.592 76.238 0.592 -0.003 0.739 69.07 0.583 
-
13.493 

Dry Scenario 3 (14 years calibration vs 1 years validation) 

Single 
Variable  

Linear y = 1.2017x + 20.646 0.5874 77.377 0.587 -0.003 0.94 27.49 0.861 -3.515 

Logarithmic y = 266.91ln(x) - 1139.5 0.5406 81.642 0.541 -0.017 0.972 27.181 0.864 -4.652 

Exponential y = 116.91e0.0038x 0.5893 77.512 0.586 1.561 0.884 27.27 0.863 -1.59 

Polynomial y = 0.0012x2 + 0.5605x + 96.005 0.594 76.811 0.593 0.778 0.91 26.168 0.874 -2.943 

Power y = 2.5596x0.8703 0.5838 78.682 0.573 2.955 0.947 20.356 0.924 -1.342 

Multiple 
Variable 
(2 
Variable) 

Test 1 y = 19.04 + 0.29 x1 + 27.99 x2 0.583 77.791 0.583 -0.424 0.948 25.945 0.794 -3.684 

Test 2 y = 23.16 + 1.64 x1 - 13.57 x2 0.588 77.303 0.588 -0.080 0.936 28.479 0.751 -3.805 

Test 3 y = 22.46 + 2.02 x1 - 24.91 x2 0.588 77.296 0.588 0.000 0.932 29.570 0.732 -3.764 

Multiple 
Variable 
(3 
Variable) 

Test 1 y = 16.35 + 0.70 x1 + 14.41 x2 + 36.57 x3 0.587 77.577 0.585 1.183 0.899 44.855 0.383 -4.829 

Test 2 y = 19.82 + 0.95 x1 + 16.99 x2 + 7.46 x3 0.588 77.345 0.588 -0.239 0.922 36.371 0.594 -4.984 

Test 3 y = 25.24 + 1.86 x1 - 20.93 x2 + 23.12 x3 0.590 77.155 0.590 0.000 0.903 41.199 0.480 -5.664 

Multiple 
Variable 
(4 
Variable) 

Test 1 
y = 3.73 + 2.51 x1 - 30.96 x2 - 20.73 x3 - 1.25 
x4 

0.605 76.16 0.6 -0.043 0.958 23.15 0.836 -3.072 

Test 2 
y = 28.06 + 1.45 x1 - 3.32 x2 + 8.58 x3 - 1.10 
x4 

0.606 75.632 0.606 0.666 0.928 31.364 0.698 -5.401 

Test 3 
y = 26.71 + 1.85 x1 - 13.77 x2 - 0.28 x3 - 1.34 
x4 

0.607 75.578 0.606 0.023 0.936 29.444 0.734 -5.718 

 

4. Conclusion 

 

In the next few years, the Lau Simeme reservoir will 

become a vital dam for water supply and flood control for 

North Sumatra Province, especially in the Medan area and 

its surroundings. For this reason, it is necessary to carry 

out a very in-depth study regarding the operation of the 

hydrological system in the watershed. In order to make the 

hydrological function effective, rainfall is fundamental data 

to ensure the operation of the reservoir. By using satellite 

station data, deficiencies and loss of rainfall data can be 

reduced and handled. The method carried out in this study 

provides excellent benefits in overcoming deficiencies and 

loss of data and predicting future data for the use of water 

resources management.  

The results found that the GPM IMERG final datasets are 

the best data that can be used to reflect the ground station 

data in Lau Simeme Watershed in terms of monthly and 

wet and dry seasonal steps. The calibration and validation 

processes show that 99% of the trials passed satisfactory 

NSE and R2 values above 0.5. Furthermore, it shows that 

the resulting equation is reasonably good for interpreting 

the data on the ground station. In monthly stages, scenario 

2 in simple regression for a single variable and scenario 1 

in there variables for multiple variables are the best 

formula to describe the corrected GPM IMERG data in Lau 

Simeme Watershed with NSE values of 0.725 and 0.694, 

respectively. In the wet season stages, scenario 1 in simple 

regression for a single variable and scenario 1 in three 

variables for multiple variables reflect the reasonable 

formula with NSE 0.662 and 0.658, respectively. Whereas, 

in the dry season stages, scenario 3 in power regression for 

a single variable and scenario 2 in four variables for 

multiple variables reflect the excellent formula with NSE 

0.924 and 0.836, respectively.  

The study results also found that a good NSE value in 

the calibration process did not provide a good value yet in 

the validation process. Therefore, the form of the equation 

that can be used to interpret the ground station data 

through the GPM IMERG final dataset on the Lau Simeme 

watershed is as follows: 

• Monthly period, scenario 2, Single variable with linear 

Regression type 

• Monthly period, scenario 1, Multiple variables 3 with 

test 1 Regression type  

• The wet season, scenario 1, Single variable with linear 

Regression type  

• The wet season, scenario 1, Multiple variables 3 with 

test 1 Regression type  

• Dry period, scenario 3, Single variable with power 

Regression type  

• Dry period, scenario 3, Multiple variables 4 with test 1 

Regression type 

To further study: (1) It is necessary to research other 
satellite rainfall data to find out the best provider that can 
produce even better results; (2) Use other equations to 
determine the relationship between rainfall stations. 
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